Stop blaming the parents and teachers for students’ choices.

Peter Hilts, in his article  “Is it time to blame the students?”  addresses an issue that many educators feel uncomfortable expressing opinions on.  In this “politically correct” time that we live in, everyone is afraid to step on toes.  Responsibility is commonly shifted from one person to the next, so no-one has to feel too bad for too long.  Hilts boldly looks at that the statement “all students are all good all the time” and critically evaluates it from the perspective of the teacher.  If students are not just to acquire knowledge as they grow in years, but are also expected to “grow up“, shouldn’t they be taught to shoulder some responsibility for their learning?

If attendance, effort, and integrity are part of the problem in education, it isn’t fair to hold teachers, parents, reformers, unions, politicians, or the tooth fairy responsible,” says Hilts.  He is to be commended for making such a bold stand on a sensitive educational issue.   “Students who give partial or no effort to classwork, exams and standardized tests are mostly or exclusively responsible for their behavior.  When a student who can attend skips instead, that student is responsible.”  Certainly any education system has some disinterested teachers, or teachers who simply hate the work they do but refuse to leave it.  Every society has some parents who actively discourage the educational growth of their children, or who simply don’t care enough to encourage it.  But is it always the teachers and the parents fault when children don’t succeed at school?

As Hilts so insightfully points out, “responsibility has two faces”, and this is as true in the classroom as it is anywhere else.  When a teenage student is offered the opportunity to learn and CHOOSES not to, shouldn’t they be the ones to accept responsibility for that choice?

Share

Is kindergarten too young to study Physics?

Studying Physics in a kindergarten classMany parents of young children have vague (and sometimes not so pleasant) memories of studying Physics during their high school years.  These same parents with their somewhat patchy memories of what matter and energy are, and how these “Physics things” interact, would be astounded to learn that their kindergarten-age children are in fact ready to study Physics.  But isn’t Physics terribly complex with lots of formulae, obscure calculations, and plenty of abstract concepts to glue it all together?  How can a kindergarten-age child possibly study Physics?

 [1]Marxen in her article “Push, Pull, Toss, Tilt, Swing: Physics for Young Children”, explores the role of Physics in the learning process and problem-solving skill development of young children.  Marxen comments that there are “similarities between how children think and learn and how scientists work. Children, like scientists, are theory builders. When children are allowed to construct knowledge by acting on their environment, they expand their understanding, which in turn contributes to their intellectual development.”  So your children are little rocket scientists in disguise, how exactly are they learning and building these theories?

Marxen explains that young children’s Physics experiences usually involve the movement of objects.  For most parents and teachers, “movement of objects” is synonymous with play.  The action is primary and the observation is secondary. Children typically make discoveries about matter and energy through creative play and simple discovery activities in the classroom and at home. For example, something as simple and inexpensive as some small balls and a few sheets of cardboard (that can be folded into ramp-like structures of varying steepness) can invite children to explore concepts that will only be translated into detailed formulae and complex concepts many years down the road for them.  Playing and learning to ask the question “why does that happen” gives these children the opportunity to acquire valuable learning experience.  This experience can be built upon to create a practical knowledge base which will later provide a sturdy foundation to which more complex, abstract Physics knowledge can easily be added.

Are kindergarten children too young to study Physics?  Absolutely not!  Teachers and parents alike can introduce young children to Physics discovery and learning with play-based activities without fear that the children may be overwhelmed or turned off Physics.  Plan playtime or classroom activities that focus on getting the children to experiment and make observations about the world they live in, and you will be well on your way to stimulating a life-long interest in, and appreciation for Physics.

[1]        Carol E. Marxen; Childhood Education, Vol. 71, 1995.

Share

Engaging the reflective mind

The image of a good problem solver is one of an intelligent person. But years of teaching Physics to intelligent young people has convinced me that intelligence isn’t the only criterion for a successful problem solver. Common sense is perhaps more critical than many have recognized. Without it, an intelligent individual may have a lot of knowledge  and the capacity to make complex connections, but may simply lack the practical wisdom to apply it appropriately. Unfortunately, recognition of the fact that common sense is critical to effective problem solving is where most people stop. Possibly this resistance to dig deeper is due to an underlying belief that if you don’t have a whole lot of common sense to begin with, you are never going to get more.

Daniel Willingham, in a recent article, raises the question of whether common sense can indeed be taught. Willingham debates this question from a psychological perspective and eloquently references psychologist Keith Stanovich who, in his new book What Intelligence Tests Miss, offers a way to understand the difference between intelligence and common sense.   Stanovich sticks to a more traditional definition of intelligence that focuses on the ability to solve problems and make effective decisions. Stanovich suggests that there are three components to the cognitive system that handles these functions: the autonomous mind (which engages in quick thinking based on simple associations and past experiences), the algorithmic mind (which processes information by making comparisons and combining concepts), and the reflective mind (which interprets goals and beliefs and determines appropriate actions to achieve those goals). What most people don’t realize is that typical intelligence tests measure the efficiency of the algorithmic mind, but fail to consider the moderating effect of the reflective mind.

To problem solve effectively, you don’t only need to decide which facts should be combined to generate a solution. You have to test and adapt that selection (made by the algorithmic mind) to the situation at hand. In other words, the solution needs to fit into the environment of the problem, or the solution will never be practical. And this is the job of the reflective mind. According to Willingham, “You need to see your environment for what it is, you need to set realistic goals, and you need to select actions that move you towards those goals.” Intelligent people (categorized this way by typical intelligence tests) don’t always successful engage their reflective minds (the source of common sense) to determine the appropriateness of their solution. The result? Intelligent people are not always naturally good problem solvers. But could they become good problem solvers? To the critical question, “can common sense be taught?” Willingham’s response is “To some extent, yes. With sufficient practice, people can come to recognize the types of errors the reflective mind makes, and learn to avoid them.”

Share

How do we challenge and motivate students?

Every teacher knows that getting our students excited about learning is not always easy.  There are, however, some successful ways to engage learners and raise their excitement levels.  Elena Aguilar describes one such approach in the article, Do Your Final Projects Challenge and Motivate Students? | Edutopia.  Give students a clear goal, a practical way to express what they have learned, and you will encourage learning.  Aguilar describes how “dangling” the final project in front of the students actually lures them into the learning process.  For the students, “the purpose of learning discrete skills” becomes apparent.  “They see how the learning will be applied, they know that there’ll be an audience at the end, and they anticipate the fun.”

Share

Mathematics as a Family Activity

Mathematics doesn’t belong exclusively in the maths classroom. Parents can, and should, integrate it in a number of enjoyable family activities. In most cases, when they are enjoying themselves, children will not even be aware that they are developing their mathematical skills as they play. Do parents require special skills or need to take some course to encourage their children to develop basic mathematical skills early? Fortunately not. In fact, you don’t even need to be “good at Mathematics” to have fun with your kids. And that is the key: fun. Children need to learn that addition, subtraction, multiplication, and division (and later calculus and trigonometry) are not just useless, intimidating procedures weighing down their homework. The best way for children to learn this, is to learn it without directly associating the learning with formal Mathematics.

As part of this blog, I will share some of the mathematics-oriented family activities that I enjoy, and which don’t require special training. Some of these ideas will be so obvious and “everyday” that you will wonder why you haven’t been “playing” all along. Join me as we explore these ideas and develop them into games for the whole family.

Share

Is it possible to put common sense back where it belongs?

For many students, something very fundamental is missing from the problem solving process. Many of my students simply couldn’t see the “obvious” as it glared at them from the question paper in front of them. Because they missed the simple sign posts that point the way to the solution in a problem solving activity, they quickly became hopelessly lost, and almost all would give up the moment the hopelessness attacked.

It took a while to realize that many of the students who struggled with the challenges of science or mathematics were not tripped up by a lack of knowledge of the subject. They knew the facts – they just didn’t know how to make the facts evolve into a solution to a fact-related problem. There are a number of reasons for this happening, but from my observation, the most common problem is that the students simply missed the “obvious”. It’s not that the students were rebelling against “common sense” just for the sake of rebelling. Most students simply had no idea that they lacked that vital ingredient to successful problem solving, that simple human quality which previous generations called good, old “common sense”. Sadly, it has become apparent that “common sense” is no longer common.

If common sense is missing, is it possible to put it back where it belongs? As we explore the process of learning, we will try to answer this question.

Share

Where it all begins…

Welcome to my blog.  You are invited to journey with me as we explore learning.  Before you decide that this topic has no relevance to you, let me present evidence to the contrary.  You are, after all, able to read this paragraph right now because you learned to read at some earlier time.  You can also tell me how many letters are in the first word of this paragraph, because once upon a time you learned to count.  Just like me, you are an experienced learner.  Learning is something we all do, and have done since we were infants.  As both a scientist and an educator, I derive great pleasure from seeking truth, acquiring knowledge, experimenting with it, and then sharing that knowledge and experience with others. This blog is my way to share what I have learned, and am still learning, with you. Join me as we ask questions, seek answers, digest old angles to the learning debate, explore new ideas that make learning exciting for children and adults alike, and take down the intimidating monsters that have guarded the gates to learning for too long.

Share